subject

Piecewise Functions

Math ⇒ Functions

Piecewise Functions starts at 10 and continues till grade 12. QuestionsToday has an evolving set of questions to continuously challenge students so that their knowledge grows in Piecewise Functions. How you perform is determined by your score and the time you take. When you play a quiz, your answers are evaluated in concept instead of actual words and definitions used.
See sample questions for grade 11
A function is defined as f(x) = { 2x+1, if x ≤ 0; x², if x > 0 }. Find f(0).
A function is defined as f(x) = { 2x+1, if x ≤ 0; x², if x > 0 }. Find f(3).
Describe a real-world situation that can be modeled by a piecewise function.
Describe how to determine if a piecewise function is continuous at a point where the formula changes.
Explain why the function f(x) = { x², if x < 0; x, if x ≥ 0 } is not differentiable at x = 0.
Given f(x) = { 2x+1, if x < 0; 3x-2, if x ≥ 0 }, for which value of x does f(x) = 4?
Given the function f(x) = { x+2, if x < 0; 2x-1, if x ≥ 0 }, find f(2).
Given the function f(x) = { x+2, if x < 0; 2x-1, if x ≥ 0 }, find f(-3).
If f(x) = { 2x, if x < 0; 3, if x = 0; x-1, if x > 0 }, find f(0).
If f(x) = { 2x, if x < 0; 3, if x = 0; x-1, if x > 0 }, find f(-2).
If f(x) = { 2x, if x < 0; 3, if x = 0; x-1, if x > 0 }, find f(5).
If f(x) = { 2x+1, if x < 1; 3, if x = 1; x², if x > 1 }, find f(1).
If f(x) = { 3, if x < 2; x², if x ≥ 2 }, what is f(1)?
If f(x) = { 3, if x < 2; x², if x ≥ 2 }, what is f(2)?
If f(x) = { x+1, if x < 0; 0, if x = 0; x-1, if x > 0 }, what is the range of f(x)?
If f(x) = { x+2, if x < 0; 2x-1, if x ≥ 0 }, what is the range of f(x)?
If f(x) = { x+2, if x < 0; 2x-1, if x ≥ 0 }, what is the value of f(x) at x = 0?
If f(x) = { x+2, if x ≤ 1; 3x, if x > 1 }, find the value of x where f(x) is not continuous.
If f(x) = { x², if x ≤ 2; 4x-3, if x > 2 }, find f(2).
If f(x) = { x², if x ≤ 2; 4x-3, if x > 2 }, find f(3).